Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.191
Filtrar
1.
PLoS One ; 19(4): e0300331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635511

RESUMO

The performance of apparently biocompatible implanted bovine bone grafts may be compromised by unresolved chronic inflammation, and poor graft incorporation leading to implant failure. Monitoring the intensity and duration of the inflammatory response caused by implanted bone grafts is crucial. In this study, the ability of demineralized (DMB) and decellularized (DCC) bovine bone substitutes in initiating inflammatory responses to peripheral blood monocyte-derived macrophages (PBMMs) was investigated. The response of PBMMs to bone substitutes was evaluated by using both direct and indirect cell culture, reactive oxygen species (ROS) generation, apoptosis, immunophenotyping, and cytokine production. Analysis of DMB and DCC substitutes using scanning electron microscope (SEM) showed a roughened surface with a size ranging between 500 and 750 µm. PBMMs treated with DMB demonstrated cell aggregation and clumping mimicking lipopolysaccharide (LPS) treated PBMMs and a higher proliferation ability (166.93%) compared to control (100%) and DCC treatments (115.64%; p<0.001) at 24h. This was associated with a significantly increased production of intracellular ROS in PBMMs exposed to DMB substitutes than control (3158.5 vs 1715.5; p<0.001) and DCC treatment (2117.5). The bone substitute exposure also caused an increase in percentage apoptosis which was significantly (p<0.0001) higher in both DMB (27.85) and DCC (29.2) treatment than control (19.383). A significant increase in proinflammatory cytokine expression (TNF-α: 3.4 folds; p<0.05) was observed in DMB substitute-treated PBMMs compared to control. Notably, IL-1ß mRNA was significantly higher in DMB (21.75 folds; p<0.0001) than control and DCC (5.01 folds). In contrast, DCC substitutes exhibited immunoregulatory effects on PBMMs, as indicated by the expression for CD86, CD206, and HLDR surface markers mimicking IL-4 treatments. In conclusion, DMB excites a higher immunological response compared to DCC suggesting decellularization process of tissues dampen down inflammatory reactions when exposed to PBMM.


Assuntos
Substitutos Ósseos , Humanos , Animais , Bovinos , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo
2.
J Mech Behav Biomed Mater ; 154: 106537, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38588632

RESUMO

The Advanced System for Implant Stability Testing (ASIST) is a device currently being developed to noninvasively measure implant stability by estimating the mechanical stiffness of the bone-implant interface, which is reported as the ASIST Stability Coefficient (ASC). This study's purpose was to determine whether changes in density, bonding, and drilling technique affect the measured vibration of a dental implant, and whether they can be quantified as a change in the estimated BII stiffness. Stability was also measured using RFA, insertion torque (IT) and the pullout test. Bone-level tapered implants (4.1 mm diameter, 10 mm length) were inserted in polyurethane foam as an artificial bone substitute. Samples were prepared using different bone densities (20, 30, 40 PCF), drilling sequences, and superglue to simulate a bonded implant. Measurements were compared across groups at a significance level of 0.05. The ASC was able to indicate changes in each factor as a change in the interfacial stiffness. IT and pullout force values also showed comparable increases. Furthermore, the relative difference in ISQ values between experimental groups was considerably smaller than the ASC. While future work should be done using biological bone and in-vivo systems, the results of this in-vitro study suggest that modelling of the implant system with a vibration-based approach may provide a noninvasive method of assessing the mechanical stability of the implant.


Assuntos
Substitutos Ósseos , Implantes Dentários , Vibração , Osso e Ossos , Densidade Óssea , Torque
3.
Zhongguo Gu Shang ; 37(3): 300-5, 2024 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-38515419

RESUMO

OBJECTIVE: To explore clinical efficacy of autologous bone grafts and bone substitute for the treatment of tibial plateau fractures by Meta analysis. METHODS: Controlled clinical studies on autogenous bone transplantation and bone substitutes in treating tibial plateau fractures published on PubMed,Web of Science,CNKI,Wanfang and other databases from January 2005 to August 2022 were searched by computer. Literature screening and data extraction were performed according to randomized controlled trial(RCT),and the quality of RCT were evaluated by using intervention meta-analysis criteria in Cochrane manual. Meta-analysis of joint depression,secondary collapse rate of articular surface,blood loss,operative time and infection rate between two methods were performed by Rev Man 5.3 software. RESULTS: Seven RCT studies (424 patients) were included,296 patients in bone replacement group and 128 patients in autograft group. Operative time [MD=-16.79,95%CI(-25.72,-7.85),P=0.000 2] and blood loss[MD=-70.49,95%CI(-79.34,-61.65),P<0.000 01] between two groups had statistically differences,while joint depression[MD=-0.17,95%CI(-0.91,0.58),P=0.66],secondary collapse rate of joint surface[RR=-0.74, 95%CI(0.35,1.57),P=0.43],infection rate [RR=1.21,95%CI(0.31,4.70),P=0.78] between two groups had no differences. CONCLUSION: The effects of bone substitute and autograft for the treatment of tibial plateau fracture have similar effects in terms of joint depression,secondary articular surface collapse rate and infection rate. However,compared with autologous bone transplantation,bone replacement could reduce blood loss and shorten operation time.


Assuntos
Substitutos Ósseos , Fraturas da Tíbia , Fraturas do Planalto Tibial , Humanos , Substitutos Ósseos/uso terapêutico , Transplante Ósseo/métodos , Fraturas da Tíbia/cirurgia , Resultado do Tratamento , Fixação Interna de Fraturas/métodos
4.
Biomed Mater ; 19(3)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38518364

RESUMO

The development of efficacious bone substitute biomaterials remains a major challenge for research and clinical surgical. Herein, we constructed triple helix recombinant collagen (THRC) -based hydrogels loading bone morphogenetic protein-2 (BMP-2) to stimulate bone regeneration in cranial defects. A series of in situ forming hydrogels, denoted as THRC-oxidized carboxymethylcellulose (OCMC)-N-succinyl-chitosan (NSC) hydrogels, was synthesized via a Schiff base reaction involving OCMC, THRC and NSC. The hydrogels underwent rapid formation under physiological pH and temperature conditions. The composite hydrogel exhibits a network structure characterized by uniform pores, the dimensions of which can be tuned by varying THRC concentrations. The THRC-OCMC-NSC and THRC-OCMC-NSC-BMP2 hydrogels display heightened mechanical strength, substantial biodegradability, and lower swelling properties. The THRC-OCMC-NSC hydrogels show exceptional biocompatibility and bioactivity, accelerating cell proliferation, adhesion, and differentiation. Magnetic resonance imaging, computed tomography and histological analysis of rat cranial defects models revealed that the THRC-OCMC-NSC-BMP2 hydrogels substantially promote new bone formation and expedite bone regeneration. The novel THRC-OCMC-NSC-BMP2 hydrogels emerge as promising candidates for bone substitutes, demonstrating substantial potential in bone repair and regeneration applications.


Assuntos
Substitutos Ósseos , Quitosana , Ratos , Animais , Hidrogéis/química , Materiais Biocompatíveis , Regeneração Óssea , Colágeno , Quitosana/química , Proteínas Morfogenéticas Ósseas , Proteína Morfogenética Óssea 2/química
5.
Cell Transplant ; 33: 9636897241236030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38494898

RESUMO

The conventional approach for addressing bone defects and stubborn non-unions typically involves the use of autogenous bone grafts. Nevertheless, obtaining these grafts can be challenging, and the procedure can lead to significant morbidity. Three primary treatment strategies for managing bone defects and non-unions prove resistant to conventional treatments: synthetic bone graft substitutes (BGS), a combination of BGS with bioactive molecules, and the use of BGS in conjunction with stem cells. In the realm of synthetic BGS, a multitude of biomaterials have emerged for creating scaffolds in bone tissue engineering (TE). These materials encompass biometals like titanium, iron, magnesium, and zinc, as well as bioceramics such as hydroxyapatite (HA) and tricalcium phosphate (TCP). Bone TE scaffolds serve as temporary implants, fostering tissue ingrowth and the regeneration of new bone. They are meticulously designed to enhance bone healing by optimizing geometric, mechanical, and biological properties. These scaffolds undergo continual remodeling facilitated by bone cells like osteoblasts and osteoclasts. Through various signaling pathways, stem cells and bone cells work together to regulate bone regeneration when a portion of bone is damaged or deformed. By targeting signaling pathways, bone TE can improve bone defects through effective therapies. This review provided insights into the interplay between cells and the current state of bioceramics in the context of bone regeneration.


Assuntos
Materiais Biocompatíveis , Substitutos Ósseos , Tecidos Suporte , Regeneração Óssea , Engenharia Tecidual/métodos , Durapatita
6.
J Biomed Mater Res B Appl Biomater ; 112(3): e35397, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456309

RESUMO

In this study, we have formulated a novel apatite bone cements derived from natural sources (i.e. eggshell and fishbone) with improved qualities that is, porosity, resorbability, biological activity, and so forth. The naturally-derived apatite bone cement (i.e. FBDEAp) was prepared by mixing hydroxyapatite (synthesized from fishbone) and tricalcium phosphate (synthesized from eggshell) as a solid phase with a liquid phase (a dilute acidic blend of cement binding accelerator and biopolymers like gelatin and chitosan) with polysorbate (as liquid porogen) to get a desired bone cement paste. The prepared cement paste sets within the clinically acceptable setting time (≤20 min), easily injectable (>85%) through hands and exhibits physiological pH stability (7.3-7.4). The pure apatite phased bone cement was confirmed by x-ray diffraction and Fourier transform infrared spectroscopy analyses. The FBDEAp bone cement possesses acceptable compressive strength (i.e. 5-7 MPa) within trabecular bone range and is resorbable up to 28% in simulated body fluid solution within 12 weeks of incubation at physiological conditions. The FBDEAp is macroporous in nature (average pore size ~50-400 µm) with interconnected pores verified by SEM and micro-CT analyses. The FBDEAp showed significantly increased MG63 cell viability (>125% after 72 h), cell adhesion, proliferation, and key osteogenic genes expression levels (up to 5-13 folds) compared to the synthetically derived, synthetic and eggshell derived as well as synthetic and fishbone derived bone cements. Thus, we strongly believe that our prepared FBDEAp bone cement can be used as potential trabecular bone substitute in orthopedics.


Assuntos
Substitutos Ósseos , Quitosana , Apatitas/farmacologia , Apatitas/química , Substitutos Ósseos/química , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Fosfatos de Cálcio/química , Durapatita , Quitosana/farmacologia , Quitosana/química , Difração de Raios X , Força Compressiva
7.
Clin Oral Investig ; 28(4): 213, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38480533

RESUMO

OBJECTIVE: The limitations of spontaneous bone healing underscore the necessity for exploring alternative strategies to enhance bone regeneration in maxillary radicular cyst cases. This retrospective study aimed to assess the impact of a bone substitute material (i.e., Bio-Oss) on bone volume regeneration following maxillary radicular cyst enucleation using cone-beam computed tomography (CBCT). MATERIALS AND METHODS: Seventy-three patients with maxillary radicular cysts were divided into two groups: one undergoing guided bone regeneration (GBR) with Bio-Oss and absorbable collagen membrane (n = 35), and the other receiving cyst excision alone (n = 38). Volumetric measurements using Amira software on CBCT scans evaluated bone regeneration, with cystic lesion shrinkage rates calculated. Intergroup comparisons utilized independent sample t-tests (P < 0.05), and linear regression analysis assessed the influence of preoperative cyst volume and group on bone healing. RESULTS: Both groups showed similar success rates in bone formation at the 12-month follow-up, with no significant differences between them (mean (SD), control: 75.16 (19.17) vs. GBR: 82 (20.22), P > 0.05). Linear regression analysis revealed a negative correlation between preoperative cyst volume and bone regeneration in both groups (P < 0.05). CONCLUSION: Bio-Oss may not significantly enhance bone augmentation in maxillary radicular cysts. In addition, preoperative cyst volume negatively affected the shrinkage rate of cystic lesions. CLINICAL RELEVANCE: Clinicians should consider patient-specific factors such as anatomy and lesion size when determining the need for bone substitute materials. Future research could focus on optimizing treatment protocols and alternative regenerative strategies to improve patient outcomes in maxillary cyst cases.


Assuntos
Substitutos Ósseos , Minerais , Cisto Radicular , Humanos , Transplante Ósseo/métodos , Estudos Retrospectivos , Cisto Radicular/cirurgia , Substitutos Ósseos/uso terapêutico , Regeneração Óssea
8.
Int J Implant Dent ; 10(1): 7, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329586

RESUMO

PURPOSE: Maxillary molars have low alveolar bone height diameter due to the presence of the maxillary sinus; thus, a sinus lift may be required in some cases. Changes in the volume of bone substitutes can affect the success of implant therapy. Therefore, this study aimed to compare the changes in the volume of two different bone substitutes-one based on carbonate apatite and the other on octacalcium phosphate-used in maxillary sinus floor elevation. METHODS: Nineteen patients and 20 sites requiring maxillary sinus floor elevation were included in the study. Digital Imaging and Communications in Medicine data for each patient obtained preoperatively and immediately and 6 months postoperatively were used to measure the volume of the bone grafting material using a three-dimensional image analysis software. The immediate postoperative volume of octacalcium phosphate was 95.3775 mm3 per piece of grafting material used. It was multiplied by the number of pieces used and converted to mL to determine the immediate postoperative volume. RESULTS: The mean resorption values of carbonate apatite and octacalcium phosphate were 12.7 ± 3.6% and 17.3 ± 3.9%, respectively. A significant difference in the amount of resorption of the two bone replacement materials was observed (P = 0.04). CONCLUSIONS: The results of this study indicate that both bone substitute materials tend to resorb. The two bone grafting materials that are currently medically approved in Japan have not been in the market for a long time, and their long-term prognosis has not yet been reported. Further clinical data are warranted.


Assuntos
Substitutos Ósseos , Fosfatos de Cálcio , Levantamento do Assoalho do Seio Maxilar , Humanos , Seio Maxilar/diagnóstico por imagem , Seio Maxilar/cirurgia , Substitutos Ósseos/uso terapêutico , Apatitas , Carbonatos
9.
J Biomed Mater Res B Appl Biomater ; 112(2): e35388, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38334714

RESUMO

The trace element strontium (Sr) enhances new bone formation. However, delivering Sr, like other materials, in a sustained manner from a ceramic bone graft substitute (BGS) is difficult. We developed a novel ceramic BGS, polyphosphate dicalcium phosphate dehydrate (P-DCPD), which delivers embedded drugs in a sustained pattern. This study assessed the in vitro and in vivo performance of Sr-doped P-DCPD. In vitro P-DCPD and 10%Sr-P-DCPD were nontoxic and eluents from 10%Sr-P-DCPD significantly enhanced osteoblastic MC3T3 cell differentiation. A sustained, zero-order Sr release was observed from 10%Sr-P-DCPD for up to 70 days. When using this BGS in a rat calvaria defect model, both P-DCPD and 10% Sr-P-DCPD were found to be biocompatible and biodegradable. Histologic data from decalcified and undecalcified tissue showed that 10%Sr-P-DCPD had more extensive new bone formation compared with P-DCPD 12-weeks after surgery and the 10%Sr-P-DCPD had more organized new bone and much less fibrous tissue at the defect margins. The new bone was formed on the surface of the degraded ceramic debris within the bone defect area. P-DCPD represented a promising drug-eluting BGS for repair of critical bone defects.


Assuntos
Substitutos Ósseos , Fosfatos de Cálcio , Fosfatos , Polifosfatos , Ratos , Animais , Polifosfatos/farmacologia , Substitutos Ósseos/farmacologia , Estrôncio/farmacologia , Cerâmica/farmacologia , Crânio
10.
Sci Rep ; 14(1): 3397, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336901

RESUMO

Ridge resorption can result in insufficient bone volume for implant surgery, necessitating bone substitutes to restore the resorption area. Recent advances in computer-aided design and manufacturing enable the use of alloplastic bone graft materials with customizable compositions or shapes. This randomized study evaluated the clinical effectiveness of a customized three-dimensional (3D) printed alloplastic bone material. Sixty patients requiring guided bone regeneration for implant installation following tooth extraction due to alveolar bone resorption were recruited at two institutions. The participants were randomly allocated to either a group that received 3D-printed patient-customized bone graft material or a group that received conventional block bone graft material. Implant installation with bone harvesting was performed approximately 5 months after bone grafting. Histological and radiological assessments of the harvested bone area were performed. The experimental group had a significantly higher percent bone volume and a smaller tissue surface than the control group. Bone volume, bone surface, bone surface/volume ratio, bone surface density (bone surface/total volume), and bone mineral density did not differ significantly between groups. Patient-customized bone graft materials offer convenience and reduce patient discomfort. The findings suggest 3D-printed patient-customized bone graft materials could be used as an alternative for simpler bone grafting procedures.


Assuntos
Perda do Osso Alveolar , Substitutos Ósseos , Humanos , Transplante Ósseo/métodos , Estudos Prospectivos , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/cirurgia , Regeneração Óssea , Cerâmica
11.
J Long Term Eff Med Implants ; 34(2): 17-27, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305367

RESUMO

This study aimed to compare the volume and quality of the newly formed bone following application of two types of xenografts and one synthetic material in bone defects in rabbit calvaria from histological and micro-CT aspects. Four 8-mm defects were created in 12 rabbit calvaria. Three defects were filled with bone substitutes and one was left unfilled as the control group. The newly formed bone was evaluated histologically and also by micro-CT at 8 and 12 weeks after the intervention. The percentage of osteogenesis was comparable in histomor-phometric assessment and micro-CT. Histological analysis showed that the percentage of the newly formed bone was 10.92 ± 5.17%, 14.70 ± 11.02%, 11.47 ± 7.04%, and 9.45 ± 5.18% in groups bovine 1, bovine 2, synthetic, and negative control, respectively after 8 weeks. These values were 33.70 ± 11.48%, 26.30 ± 18.05%, 22.92 ± 6.30%, and 14.82 ± 8.59%, respectively at 12 weeks. The difference in the percentage of the new bone formation at 8 and 12 weeks was not significant in any group (P > 0.05) except for bovine 1 group (P < 0.05). Micro-CT confirmed new bone formation in all groups but according to the micro-CT results, the difference between the control and other groups was significant in this respect (P < 0.05). All bone substitutes enhanced new bone formation compared with the control group. Micro-CT assessment yielded more accurate and different results compared with histological assessment.


Assuntos
Substitutos Ósseos , Osteogênese , Humanos , Animais , Bovinos , Coelhos , Substitutos Ósseos/farmacologia , Regeneração Óssea , Crânio/diagnóstico por imagem , Crânio/cirurgia
12.
Int J Implant Dent ; 10(1): 9, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372934

RESUMO

PURPOSE: Tricalcium phosphate (TCP) has osteoconductive ability and reportedly offers similar clinical results as autogenous bone grafts in dental implant treatment. However, few reports quantify temporal changes in augmented bone volume after sinus augmentation. We aimed to establish a three-dimensional (3D) quantification method to assess bone volume after sinus augmentation and to evaluate biocompatibility of the TCP plate. METHODS: Maxillary sinus floor augmentation was performed employing the lateral window technique, and plate-shaped ß-TCP (TCP plate) was used instead of granular bone grafting materials. After lifting the sinus membrane, the TCP plate was inserted and supported by dental implants or micro-screws. The changes in bone volumes in the maxillary sinus before and after surgery were recorded using cone-beam computed tomography, saved as Digital Imaging and Communications in Medicine-formatted files, and transformed to Standard Triangle Language (STL)-formatted files. Pre- and post-operative STL data of bone volume were superimposed, and the augmented bone volume was calculated. Moreover, changes in bone volumes, TCP plate resorption rates, and bone heights surrounding the implants were three dimensionally quantified. RESULTS: Fifteen implants in nine subjects were included in this study. TCP plates secured long-term space making, with results similar to those of granular bone substitutes. Newly formed bone was identified around the implant without bone graft material. TCP plate was absorbed and gradually disappeared. CONCLUSIONS: A novel 3D quantification method was established to evaluate changes in bone volume. Clinical application of TCP plate in sinus augmentation could be a better procedure in terms of prognosis and safety.


Assuntos
Substitutos Ósseos , Fosfatos de Cálcio , Levantamento do Assoalho do Seio Maxilar , Humanos , Substitutos Ósseos/uso terapêutico , Seio Maxilar/diagnóstico por imagem , Seio Maxilar/cirurgia , Placas Ósseas
13.
Int J Implant Dent ; 10(1): 3, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315258

RESUMO

PURPOSE: In patients with jaw bone atrophy, dental implant therapy requires bone augmentation on the alveolar ridge. Common methods are autologous bone transplantation or bone substitutes. The latter technique is less surgically invasive because it does not require bone harvesting; however, blood supply from the surrounding tissues and local differentiation of osteoblasts are not guaranteed, so adequate bone regeneration for dental implant therapy is often not achieved. Therefore, at our hospital we introduced a bone regenerative medicine technique that uses adipose stem cells (ASCs) from adipose tissue. The new approach is less surgically invasive and appears to have a better effect on bone regeneration. The current retrospective study aimed to demonstrate the efficacy of ASC transplantation in patients who underwent alveolar ridge bone augmentation at our hospital. METHODS: We compared medical records, postoperative radiographic findings, and histological results from patients treated between January 2018 and March 2022 by augmentation of the jaw bone with bone substitutes (carbonate apatite) mixed with ASCs (ASCs+ group) and those treated with bone substitutes (carbonate apatite) alone (ASCs- group). RESULTS: After 6 months, the survival rate of augmented bone and the gray scale value in dental cone beam computed tomography (a bone density index) were significantly higher in the ASCs+ group than in the ASCs- group. Histological analysis at 6 months showed more adequate bone tissue regeneration in the ASCs+ group. CONCLUSIONS: The findings suggest the effectiveness of using ASCs in bone augmentation on the alveolar ridge in patients with jaw bone atrophy.


Assuntos
Apatitas , Substitutos Ósseos , Implantes Dentários , Humanos , Estudos Retrospectivos , Regeneração Óssea , Transplante de Células-Tronco , Atrofia
14.
Carbohydr Polym ; 331: 121823, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388030

RESUMO

Cellulose-based polymer scaffolds are highly diverse for designing and fabricating artificial bone substitutes. However, realizing the multi-biological functions of cellulose-based scaffolds has long been challenging. In this work, inspired by the structure and function of the extracellular matrix (ECM) of bone, we developed a novel yet feasible strategy to prepare ECM-like scaffolds with hybrid calcium/zinc mineralization. The 3D porous structure was formed via selective oxidation and freeze drying of bacterial cellulose. Following the principle of electrostatic interaction, calcium/zinc hybrid hydroxyapatite nucleated, crystallized, and precipitated on the 3D scaffold in simulated physiological conditions, which was well confirmed by morphology and composition analysis. Compared with alternative scaffold cohorts, this hybrid ion-loaded cellulose scaffold exhibited a pronounced elevation in alkaline phosphatase (ALP) activity, osteogenic gene expression, and cranial defect regeneration. Notably, the hybrid ion-loaded cellulose scaffold effectively fostered an M2 macrophage milieu and had a strong immune effect in vivo. In summary, this study developed a hybrid multifunctional cellulose-based scaffold that appropriately simulates the ECM to regulate immunomodulatory and osteogenic differentiation, setting a measure for artificial bone substitutes.


Assuntos
Substitutos Ósseos , Osteogênese , Osteogênese/genética , Cálcio/metabolismo , Tecidos Suporte/química , Celulose/farmacologia , Celulose/metabolismo , Zinco/farmacologia , Regeneração Óssea , Durapatita/metabolismo , Matriz Extracelular/metabolismo
15.
Clin Implant Dent Relat Res ; 26(2): 402-414, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38317374

RESUMO

AIMS: The aim of this randomized controlled clinical trial was to compare the gene expression, micro-CT, histomorphometrical analysis between biphasic calcium phosphate (BCP) of 70/30 ratio and deproteinized bovine bone mineral (DBBM) in sinus augmentation. MATERIALS AND METHODS: Twenty-four patients in need for sinus floor augmentation through lateral approach were randomized into BCP 70/30 ratio or DBBM. After at least 6 months of healing, a total of 24 bone specimens were collected from the entire height of the augmented bone at the area of implant placement and underwent micro-CT, histomorphometric and gene expression analysis. The 12 bone specimens of BCP 70/30 ratio were equally allocated to micro-CT and histologic analysis (test group, n = 6) and gene expression analysis (test group, n = 6). Similarly, the 12 bone specimens of DBBM were also allocated to micro-CT and histologic analysis (control group, n = 6) and gene expression analysis (control group, n = 6). The newly formed bone, remaining graft materials and relative change in gene expression of four target genes were assessed. RESULTS: The micro-CT results showed no statistically significant difference in the ratio of bone volume to total volume (BV/TV ratio) for the two groups (BCP 41.51% vs. DBBM 40.97%) and the same was true for residual graft material to total volume (GV/TV ratio, BCP 9.97% vs. DBBM 14.41%). Similarly, no significant difference was shown in the histological analysis in terms of bone formation, (BCP 31.43% vs. DBBM was 30.09%) and residual graft area (DBBM 40.76% vs. BCP 45.06%). With regards to gene expression, the level of ALP was lower in both groups of bone grafted specimens compared with the native bone. On the contrary, the level of OSX, IL-1B and TRAP was higher in augmented bone of both groups compared with the native bone. However, the relative difference in all gene expressions between BCP and DBBM group was not significant. CONCLUSIONS: The BCP, HA/ß-TCP ratio of 70/30 presented similar histological and micro-CT outcomes in terms of new bone formation and residual graft particles with DBBM. The gene expression analysis revealed different gene expression patterns between augmented and native bone, but showed no significant difference between the two biomaterials.


Assuntos
Substitutos Ósseos , Hidroxiapatitas , Levantamento do Assoalho do Seio Maxilar , Humanos , Animais , Bovinos , Levantamento do Assoalho do Seio Maxilar/métodos , Microtomografia por Raio-X , Substitutos Ósseos/uso terapêutico , Minerais , Expressão Gênica , Seio Maxilar , Transplante Ósseo/métodos , Produtos Biológicos
16.
Tissue Eng Part C Methods ; 30(4): 159-169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368556

RESUMO

Considerable research is being undertaken to develop novel biomaterials-based approaches for surgical reconstruction of bone defects. This extends to three-dimensional (3D) printed materials that provide stable, structural, and functional support in vivo. However, few preclinical models can simulate in vivo human biological conditions for clinically relevant testing. In this study we describe a novel ovine model that allows evaluation of in vivo osteogenesis via contact with bone and/or periosteum interfaced with printed polymer bioreactors loaded with biomaterial bone substitutes. The infraspinous scapular region of 14 Dorset cross sheep was exposed. Vascularized periosteum was elevated either attached to the infraspinatus muscle or separately. In both cases, the periosteum was supplied by the periosteal branch of the circumflex scapular vessels. In eight sheep, a 3D printed 4-chambered polyetheretherketone bioreactor was wrapped circumferentially in vascularized periosteum. In 6 sheep, 12 double-sided 3D printed 2-chambered polyetherketone bioreactors were secured to the underlying bone allowing direct contact with the bone on one side and periosteum on the other. Our model enabled simultaneous testing of up to 24 (12 double-sided) 10 × 10 × 5 mm bioreactors per scapula in the flat contact approach or a single 40 × 10 mm four-chambered bioreactor per scapula using the periosteal wrap. De novo bone growth was evaluated using histological and radiological analysis. Of importance, the experimental model was well tolerated by the animals and provides a versatile approach for comparing the osteogenic potential of cambium on the bone surface and elevated with periosteum. Furthermore, the periosteal flaps were sufficiently large for encasing bioreactors containing biomaterial bone substitutes for applications such as segmental mandibular reconstruction.


Assuntos
Substitutos Ósseos , Periósteo , Ovinos , Animais , Humanos , Periósteo/patologia , Periósteo/fisiologia , Periósteo/cirurgia , Regeneração Óssea/fisiologia , Osteogênese/fisiologia , Materiais Biocompatíveis , Reatores Biológicos
17.
Eur J Clin Microbiol Infect Dis ; 43(3): 489-499, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38195783

RESUMO

INTRODUCTION: Dead space management following debridement surgery in chronic osteomyelitis or septic non-unions is one of the most crucial and discussed steps for the success of the surgical treatment of these conditions. In this retrospective clinical study, we described the efficacy and safety profile of surgical debridement and local application of S53P4 bioactive glass (S53P4 BAG) in the treatment of bone infections. METHODS: A consecutive single-center series of 38 patients with chronic osteomyelitis (24) and septic non-unions (14), treated with bioactive glass S53P4 as dead space management following surgical debridement between May 2015 and November 2020, were identified and evaluated retrospectively. RESULTS: Infection eradication was reached in 22 out of 24 patients (91.7%) with chronic osteomyelitis. Eleven out of 14 patients (78.6%) with septic non-union achieved both fracture healing and infection healing in 9.1 ± 4.9 months. Three patients (7.9%) developed prolonged serous discharge with wound dehiscence but healed within 2 months with no further surgical intervention. Average patient follow-up time was 19.8 months ± 7.6 months. CONCLUSION: S53P4 bioactive glass is an effective and safe therapeutic option in the treatment of chronic osteomyelitis and septic non-unions because of its unique antibacterial properties, but also for its ability to generate a growth response in the remaining healthy bone at the bone-glass interface.


Assuntos
Substitutos Ósseos , Osteomielite , Humanos , Estudos Retrospectivos , Substitutos Ósseos/uso terapêutico , Antibacterianos/uso terapêutico , Infecção Persistente , Osteomielite/tratamento farmacológico , Osteomielite/cirurgia , Osteomielite/microbiologia
18.
JBJS Rev ; 12(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38181108

RESUMO

¼ Unicameral bone cysts (UBCs) can increase the risk of pathologic fractures of both long and short bones. Although multiple treatments exist, data are conflicting regarding optimal management.¼ We sought to analyze treatment strategies for UBCs and their rates of successful treatment.¼ Success rates were analyzed according to treatment modality, with emphasis on filling techniques and/or decompression associated with curettage, and injection compounds.¼ Curettage with bone substitute and cyst decompression was identified as a highly successful technique for UBC treatment.¼ Decompressing the cyst wall after injection, regardless of the specific compound used, had a greater potential to enhance healing rates.¼ The management decision should be individually guided within the patient's context.


Assuntos
Cistos Ósseos , Substitutos Ósseos , Cistos , Humanos , Cistos Ósseos/diagnóstico por imagem , Cistos Ósseos/cirurgia , Cicatrização , Resultado do Tratamento
19.
Dent Mater ; 40(3): 508-519, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38199893

RESUMO

OBJECTIVES: Dental implant placement frequently requires preceding bone augmentation, for example, with hydroxyapatite (HA) or ß-tricalcium phosphate (ß-TCP) granules. However, HA is degraded very slowly in vivo and for ß-TCP inconsistent degradation profiles from too rapid to rather slow are reported. To shorten the healing time before implant placement, rapidly resorbing synthetic materials are of great interest. In this study, we investigated the potential of magnesium phosphates in granular form as bone replacement materials. METHODS: Spherical granules of four different materials were prepared via an emulsion process and investigated in trabecular bone defects in sheep: struvite (MgNH4PO4·6H2O), K-struvite (MgKPO4·6H2O), farringtonite (Mg3(PO4)2) and ß-TCP. RESULTS: All materials except K-struvite exhibited promising support of bone regeneration, biomechanical properties and degradation. Struvite and ß-TCP granules degraded at a similar rate, with a relative granules area of 29% and 30% of the defect area 4 months after implantation, respectively, whereas 18% was found for farringtonite. Only the K-struvite granules degraded too rapidly, with a relative granules area of 2% remaining, resulting in initial fibrous tissue formation and intermediate impairment of biomechanical properties. SIGNIFICANCE: We demonstrated that the magnesium phosphates struvite and farringtonite have a comparable or even improved degradation behavior in vivo compared to ß-TCP. This emphasizes that magnesium phosphates may be a promising alternative to established calcium phosphate bone substitute materials.


Assuntos
Substitutos Ósseos , Compostos de Magnésio , Magnésio , Fosfatos , Ovinos , Animais , Estruvita , Magnésio/farmacologia , Teste de Materiais , Fosfatos de Cálcio/farmacologia , Substitutos Ósseos/farmacologia , Durapatita , Regeneração Óssea
20.
BMC Oral Health ; 24(1): 69, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200461

RESUMO

OBJECTIVES: To evaluate the histological parameters and bone mechanical properties around implants with low primary stability (PS) in grafted bone substitutes within an oversized osteotomy. MATERIALS AND METHODS: An oversized osteotomy penetrating the double cortical bone layers was made on both femora of 24 New Zealand white rabbits. Bilaterally in the femur of all animals, 48 implants were installed, subdivided into four groups, corresponding to four prepared tissue-engineering bone complexes (TEBCs), which were placed between the implant surface and native bone wall: A: tricalcium phosphate ß (TCP-ß); B: autologous adipose derived-stem cells with TCP-ß (ASCs/TCP-ß); C: ASCs transfected with the enhanced-GFP gene with TCP-ß (EGFP-ASCs/TCP-ß); D: ASCs transfected with the BMP-2 gene with TCP-ß (BMP2-ASCs/TCP-ß). Trichrome fluorescent labeling was conducted. Animals were sacrificed after eight weeks. The trichromatic fluorescent labeling (%TFL), area of new bone (%NB), residual material (%RM), bone-implant contact (%BIC), and the removal torque force (RTF, N/cm) were assessed. RESULTS: ASCs were successfully isolated from adipose tissue, and the primary ASCs were induced into osteogenic, chondrogenic, and adipogenic differentiation. The BMP-2 overexpression of ASCs sustained for ten days and greatly enhanced the expression of osteopontin (OPN). At eight weeks post-implantation, increased %NB and RTF were found in all groups. The most significant value of %TFL, %BIC and lowest %RM was detected in group D. CONCLUSION: The low PS implants osseointegrate with considerable new bone in grafted TEBCs within an oversized osteotomy. Applying BMP-2 overexpressing ASCs-based TEBC promoted earlier osseointegration and more solid bone mechanical properties on low PS implants. Bone graft offers a wedging effect for the implant with low PS at placement and promotes osteogenesis on their surface in the healing period.


Assuntos
Substitutos Ósseos , Fosfatos de Cálcio , Implantes Dentários , Animais , Coelhos , Osseointegração , Osteotomia , Osteogênese , Corantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...